An Overview of Multiphase Optimization Strategy (MOST) for Behavioral Intervention Development

Liang Li, PhD

Biostatistics @ MD Anderson

Genetic Epidemiology Work Group Meeting, December 5, 2013

The Multiphase Optimization Strategy (MOST)

- An increasingly popular study design strategy in behavioral sciences research
- Proposed by Linda Collins @ Penn State
- NIH is currently funding proposals specifically for the development and application of MOST methodology
- June 18, 2013 Workshop by Dr. Collins at MDACC
- Not a statistical method, Not a study design, but a strategy to develop behavioral interventions (it involves some statistics, mainly the factorial design methodology)

Multicomponent Behavioral Interventions for Prevention and Treatment

Examples:

- Treatment for depression
- School-based drug abuse prevention
- Prevention/treatment of obesity
- Smoking cessation treatment
 - **1.** Precessation nicotine patch (Y/N)
 - 2. Precessation nitotine gum (Y/N)
 - **3.** Precessation in-person consulting (Y/N)
 - 4. Cessation in-person consulting (minimal/intensive)
 - **5.** Cessation phone consulting (minimal/intensive)
 - 6. Maintenance medication duration (short/long)

Research Question

- Goal: Develop a behavioral intervention to maximize the probability of successful quitting
 - Choose from a set of candidate components
 - Set the component levels
 - Consider constraints (cost, compliance, etc.)

Possible Approaches

- Individual experiments:
 - Run K independent randomized trials for each of the K candidate components
- Single factor experiments: K+1 group randomized trial

	Α	В	С
0	Ν	Ν	Ν
1	Y	Ν	Ν
2	Ν	Y	Ν
3	Ν	Ν	Y

- Problem:
 - ✓ It is unclear how the various components work together

Possible Approaches

- Treatment package approach:
 - Set each component to the highest level
 - Run a two group randomized trial with controls
- Problems:
 - If it is better than the control, does not indicate which component makes a difference
 - If not better, does not indicate which component did affect an improvement
 - Does not take cost or other constraints into account

The MOST Approach

- Motivated by engineering applications
 - ✓ Start with a clear goal, including constraints
 - Using the resources available, design an efficient experiment to gather the needed information (e.g., individual effects of components) (factorial design)
 - Based on the information, choose components and levels to achieve the goal (optimization)
 - Then compare new intervention to the old one (RCT)
- Optimization (in engineering): the process of finding the best possible solution to a problem ... subject to given constraints

The Engineering Perspective

- Manufacture the truck leaf string:
 - furnace temperature (low, high)
 - heating time (short, long)
 - transfer time on conveyer belt (short, long)
 - hold down time in high pressure press (short, long)
 - quench oil temperature (low, high)

The MOST Approach

- Features:
 - Indicates which components are active and which are redundant
 - Ensures an incremental improvement, and therefore is the fastest way to the best intervention in the long run
 - Readily incorporates costs/constraints of any kind
- Note:
 - There is no "MOST design"; it is a research strategy
 - At its core is a factorial design
 - "Optimal" does not mean "Best" in engineering
 - Not for causal effect of individual components (not a RCT)
 - Not confirmatory, but exploratory

The Two Principles of MOST

- Resource management principle (engineering way of thinking):
 - Huge (e.g., 64-arm RCT for 6 components) would be definitive, but not feasible
 - Given the resources and constraints, what is the most efficient way to achieve the goal
- Continuous optimization principle (engineering):
 - I have finished developing this product and it is ready to market
 - Now I am going to start developing the new, improved product
 - Optimization is a "cyclic process"

The Flow Chart of MOST

Collins, et al 2011 Ann Behav Med

The Flow Chart of MOST

- Step 1 and 2: Theoretical model and Identification of set of candidate intervention components
- Step 3A (main experiment): Use complete factorial design (CFD) or fractional factorial design (FFD)
- Step 3B (optional -- refinement): in the smoking cessation example, one component is maintenance medication weeks: 8 vs.
 16. If this component is found to be important in Step 3A, another experiment may be needed to find the optimal number of weeks
- Step 4 (assembly of beta intervention): is it better than the currently standard intervention?
- Step 5: confirmatory two-arm RCT comparing the beta intervention with the currently standard intervention

Overview of Step 3A: Experimentation to Examine Individual Intervention Components

- Objective is to identify the most promising components and level/settings
- NOT to compare each combination to a control or against each other (not a confirmatory RCT)
- Optimization criteria: effectiveness, cost/time and other constraints
- NOT to identify single best combination
 - Multiple combinations of intervention components may lead to similar results
 - To identify the single best combination, an enormous RCT is the only way and it is often impractical
 - Find a good combination, if not the best
 - MOST may identify the best combination in the long run

Factorial Design

- Dr. Collins: there is no "MOST" design; it is a research strategy that uses the factorial design (proposed by R. A. Fisher)
- Factorial design: subjects randomized to 2^κ conditions in order to study the main effect and interactions of K intervention components

Condition	Α	В	С
1	1	1	1
2	1	1	-1
3	1	-1	1
4	1	-1	-1
5	-1	1	1
6	-1	1	-1
7	-1	-1	1
8	-1	-1	-1

Why Using Factorial Design?

- It enables examination of individual component effects
- It requires SMALLER sample sizes than alternative designs (individual experiment, treatment package, single factor experiments)
- But it usually requires more experiment conditions than we may be accustomed to (causing logistic difficulties)
- We do not compare the conditions (they are too many of them!); we estimate the main effect and some interactions of scientific interest
- The estimates are based on all the subjects (efficiently use subjects and reduce sample size)

Why are we interested primarily in main effects?

- Using the information for decision making, not necessarily estimating pristine effects
- Effect is likely to be robust if it obtains an average across many other factors --- R. A. Fisher
- If theory and prior research specifies and explains an interaction, it must always be dealt with
 - But we know little about interactions
 - Most theories and models are silent on this topic
- Where theory/prior research do not specify whether or not there is an interaction, we rely on these principles from engineering:
 - Effect sparsity: there are a lot of effects in a factorial experiment, most are not significant or important
 - Hierarchical ordering: those that are important are likely to be simpler effects, i.e., main effects first, then two-way interactions

Powering the factorial design

- Power for main effects: sample size requirements for a k-factor experiment about the same as for a t-test
- Power the experiment for the smaller effect size
- Adding a factor generally does not increase sample size requirements, unless that factor is expected to have a smaller effect size
- Power the study for the smallest effect size that you would accept for inclusion in the intervention
- Usually not powered for interactions
 - Little is known about interactions
 - Effect sizes are probably much smaller than main effects

Powering the factorial design

• Three intervention components: A, B, C

Design	Design	n	# conditions	interactions
Individual experiment	A vs. NULL B vs. NULL C vs. NULL	168	6	None can be estimated
Single factor experiment	A vs. B vs. C vs. NULL	112	4	None can be estimated
Complete factorial	Factorial (A, B, C)	56	8	All can be estimated

Some Misconceptions

- Misconception 1: factorial experimental designs require larger numbers of subjects than available alternative designs
 - Reality: when used to address suitable research questions, balanced factorial designs often require may FEWER subjects than alternative designs
- Misconception 2: if you want to add a factor to a balanced factorial design, you will need to increase the sample size dramatically
 - Reality: If the effect size of the added factor is no smaller than the factors already in the experiment, power will be about the same
- Misconception 3: the primary motivation for conducting a factorial design is always to test for interactions
 - Reality: even if there is no interaction, you can still conduct a factorial design to make economical use of subjects

Some Reasons for Not Using a Factorial Design

- Intervention composed of many components with tiny effects, overall effect is cumulative
 - May be difficult to power the study for tiny effects
 - May need to sort the components into bundles and study bundles
- Factorial design requires more experimental conditions:
 - May reduce it by using fractional factorial design (FFD)

Fractional Factorial Design (FFD)

- Well established statistical theory & software, applied to behavioral science
- Factorial designs in which only a subset of experimental conditions are run
- Carefully choose the subset to answer the scientific questions; omitted conditions are not needed
- FFD requires at most ½ of the cells of a complete factorial design (CFD), often many fewer
- Example: K factors, CFD has 2^K conditions, FFD may have 2^{K-1} or 2^{K-2} conditions

About FFD

- Why run just a subset of conditions?
 - **\checkmark** Economy: K factors, CFD has 2^{K} conditions; $2^{6} = 64$, $2^{7} = 128$
 - Example: FFD may conduct a 2⁷ experiment with only 16 conditions
- When you might consider a FFD?
 - 5 or more factors (FFD exists for 3 or 4 factors, but benefit is small and strong assumptions are needed)
 - You are primarily interested in main effects and low-order interactions
 - Remaining effects and high order interactions are negligible

cell	Α	В	С	Α	В	С	A*B	A*C	B*C	A*B*C
1	Off	Off	Off	-1	-1	-1	1	1	1	-1
2	Off	Off	On	-1	-1	1	1	-1	-1	1
3	Off	On	Off	-1	1	-1	-1	1	-1	1
4	Off	On	On	-1	1	1	-1	-1	1	-1
5	On	Off	Off	1	-1	-1	-1	-1	1	1
6	On	Off	On	1	-1	1	-1	1	-1	-1
7	On	On	Off	1	1	-1	1	-1	-1	-1
8	On	On	On	1	1	1	1	1	1	1

cell	Α	В	С	Α	В	С	A*B	A*C	B*C	A*B*C
2	Off	Off	On	-1	-1	1	1	-1	-1	1
3	Off	On	Off	-1	1	-1	-1	1	-1	1
5	On	Off	Off	1	-1	-1	-1	-1	1	1
8	On	On	On	1	1	1	1	1	1	1

Statistical Power of FFD

- FFD and CFD have the same statistical power (using FFD does NOT reduce or increase sample size)
- Compared to the corresponding CFD, in a FFD:
 - Each condition will have more subjects than the CFD
 - But each effect estimate based on SAME number of subjects

Design	Number of subjects needed for power > 0.9	Number of conditions	Interactions
CFD	512	$2^6 = 64$	All can be estimated
FFD	512	8-32 depending on design	Selected subset can be estimated

Notation for FFD

- Suppose 4 factors, each factor has 2 levels.
- CFD: 2⁴ (16 conditions/cells)
- An FFD with 8 conditions is represented as 2⁴⁻¹
 - \checkmark 2⁴⁻¹=2³=8
 - This notation tells you:
 - The number of conditions in the original CFD
 - The number of conditions in the FFD
 - The fraction by which FFD reduces the original: 1/2
 - > The number of aliases of each estimable effect in FFD: 2

What is Aliasing?

cell	Α	В	С	Α	В	С	A*B	A*C	B*C	A*B*C
1	Off	Off	Off	-1	-1	-1	1	1	1	-1
2	Off	Off	On	-1	-1	1	1	-1	-1	1
3	Off	On	Off	-1	1	-1	-1	1	-1	1
4	Off	On	On	-1	1	1	-1	-1	1	-1
5	On	Off	Off	1	-1	-1	-1	-1	1	1
6	On	Off	On	1	-1	1	-1	1	-1	-1
7	On	On	Off	1	1	-1	1	-1	-1	-1
8	On	On	On	1	1	1	1	1	1	1

Estimate the effect of A: compare 2, 3, vs. 5, 8; A is aliased with B*C

- Estimate the effect of B: compare 2, 5, vs. 3, 8; B is aliased with A*C
- Estimate the effect of C: compare 2, 8, vs. 3, 5; C is aliased with A*B (A + B*C) equals A if B*C is negligible

Aliasing of Effects

- Consider a 2⁴ factorial design
- 4 factors, 16 conditions/cells
- Effects estimated (TOTAL = 16 effects)
 - ✓ 1 intercept
 - ✓ 4 main effects
 - ✓ 6 two-way interactions
 - ✓ 4 three-way interactions
 - 1 four-way interactions
- For both CFD and FFD, there are as many estimable effects as the number of conditions/cells
 - FFD: reduce the number of conditions so that effects of scientific interest are estimable but negligible effects are not estimated (resource management principle)

Aliasing of Effects

- Now consider a 2⁴⁻¹ fractional factorial design
- 4 factors, 8 conditions/cells, 8 estimable effects
- The original 16 effects are combined into 8 estimable effects (aliased)
- In any FFD, it is known which effects are aliased with which
 - \checkmark In a $\frac{1}{2}$ FFD, each effect is aliased with 1 other effect ("bundles" of 2)
 - \checkmark In a ¹/₄ FFD, each effect is aliased with 3 other effect ("bundles" of 4)
 - ✓ And so on
 - We choose to bundle the effect of scientific interest (main effects & important interactions) with a few other negligible effects
- For 4 factors, there is only 1 FFD
- As the number of factors increases, there are many FFD for each CFD
 - Choose the one for the specific scientific study

Resolution of an FFD

- FFDs are classified according to their resolution
- For a given CFD, there may be many FFDs with different resolutions
- Resolution is denoted by Roman numbers: II, IV, V, VI
- In general, in a resolution R FFD, F-way interactions are aliased ONLY with R-F way interactions or higher order interactions
 - ✓ Resolution V: 2-ways aliased only with (5-2)=3-ways or higher

Resolution	Main effects are NOT aliased with	2-way interactions are NOT aliased with
Ш	Main effects	
IV	Main effects, 2-way	Main effects
V	Main effects, 2-way, 3-way	Main effects, 2-way
VI	Main effects, 2-way, 3-way, 4-way	Main effects, 2-way, 3-way

Resolution of an FFD: Example

- CFD would be 2⁶=64 conditions
- We choose FFD with 2⁶⁻¹=32 conditions
- Fraction = half; each effect aliased with another effect
- Resolution VI:
 - ✓ Each main effect aliased with a 5-way interaction
 - Each 2-way interaction aliased with a 4-way interaction

How to Choose a FFD?

- Classify all effects of CFD into 3 categories
 - a) Effects of primary scientific interest: make them estimable
 - **b)** Effects expected to be 0 or negligible
 - c) Effects not of scientific interest but may be non-negligible
- Alias (a) and (c) with (b); Do not alias (a) with (c)
- More effects are designated negligible \rightarrow FFD with fewer conditions
- No effect is negligible → CFD is the only choice; FFD does not exist
- Heuristic guiding principles (engineering):
 - Hierarchical ordering: priority be given to lower order effects
 - Effect sparsity (Pareto principle): number of non-negligible effects is a small fraction of the total number of effects (2^K)
- Higher resolution FFD is better than lower resolution ones, because they alias main effects and 2-way interactions with high order interactions

Summary

- MOST (research strategy, not a design) is different from SMART (a design)
- Developed by Penn State Methodology Center; Download references there

http://methodology.psu.edu/

- It is not a new statistical methodology, but an application of existing statistical methods (factorial design, less well known among behavioral scientists) to behavioral intervention development
- Software: SAS PROC FACTEX
 - Specify a desired resolution
 - Specify which effects are in category (a), (b), and (c)
 - Specify constraints, including costs and maximum number of conditions
 - PROC FACTEX will generate the design (or infeasible)